Home
Class 12
MATHS
If f(x)=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/...

If `f(x)=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+...," then "f'(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1+x)(2+x^(2))^((1)/(2))(3+|x^(3)|)^((1)/(3)) then f'(-1) is

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f(x) = (x+2)/(3x-1) then f (f(x)) is

IF f(x) = ( x+2)/(3x-1) , then f(f(x)) is

If f(x)=2^x the f(x+3)/ f(x-1) =?

If : 3f(x)-2f((1)/(x))=x," then: "f'(2)=

If 2f(x^(2))+3f((1)/(x^(2)))=x^(2)-1, then f(x^(2)) is