Home
Class 12
MATHS
यदि 1,m,n वास्तविक हो व् l ne m, तो समीक...

यदि 1,m,n वास्तविक हो व् `l ne m`, तो समीकरण `(l-m)x^(2)-5 (l+m)x-2 (l-m)=0` के मूल होगा।

Promotional Banner

Similar Questions

Explore conceptually related problems

If l,m,n are real l!=m, then the roots of the equation (l-m)x^(2)-5(l+m)x-2(l-m)=0 are a.real and equal b.Complex c.real and unequal d.none of these

If l ,m ,n are real l!=m , then the roots of the equation (l-m)x^2-5(l_+m)x-2(l-m)=0 are a. real and equal b. Complex c. real and unequal d. none of these

If l ,m ,n are real and l!=m , then the roots of the equation (l-m)x^2-5(l+m)x-2(l-m)=0 are a) real and equal b) Complex c) real and unequal d) none of these

If l ,m ,n are real and l!=m , then the roots of the equation (l-m)x^2-5(l+m)x-2(l-m)=0 are a) real and equal b) Complex c) real and unequal d) none of these

IF l,m,n are rational the roots of (m +n) x^2 -(l+m+n)x+l =0 are

Explain giving reasons which of the following sets of quantum number are not possible (a ) n=0, l =0 m_(l) = 0, m_(s ) =+ (1)/(2) ( b) n=1 , l = 0 m_(l) = 0, m_(s ) = - (1)/(2) ( c) n=1 , l = 1, m_(l ) = 0, m_(s ) = + (1)/(2) (d ) n= 2, l = 1, m_(l ) = 0, m_(s ) = (1) /(2) ( e) n=3, l = 3, m_(l) = 3, m_(s ) = + (1)/(2) (f ) n=3, l = 1, m_(l) = 0, m_(s) l = + (1)/(2)

(log x)/(l+m-2n)=(log y)/(m+n-2l)=(log z)/(n+l-2m)

The area of the quadrilateral formed by two pairs of lines l^(2) x^(2)-m^(2) y^(2)-n(l x+m y)=0 and l^(2) x^(2)-m^(2) y^(2)-n(L x-m y)=0 is

If l:m:n=1:2:4, then sqrt (5l^2+ m^2+n^2) is equal to : यदि l:m:n=1:2:4 है, तो sqrt (5l^2+ m^2+n^2) का मान किसके बराबर है ?