Home
Class 10
MATHS
If x = cy + bz, y = az + cx , z =bx + ay...

If `x = cy + bz, y = az + cx , z =bx + ay,` then prove that `x^2/(1-a^2)= y^2/(1-b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = cy + bz, y = az + cx,z = bx + ay where x,y,z are not all zero, prove that a^2 + b^2 + c^2 + 2ab = 1.

Given x = cy+bz, y = az + cx, z = b x + ay where, x,y,z are not all zero prove that a^2+b^2 +c^2 + 2 a b c = 1.

If ay - bx/c = cx - az/b = bz - cy/a, then prove that x/a = y/b = z/c.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x = cy +bz, y = az + cx, z = bx+ ay where x,y and z are not all zero, then a^2 + b^2 + c^2 + 2abc = ___________

If (bz + cy)/a = (cx +az)/b = (ay+bx)/c , then prove that x/(a(b^(2) + c^(2) - a^(2))) = y/(b(c^(2) + a^(2) - b^(2))) = z/(c(a^(2)+b^(2)-c^(2))) .