Home
Class 12
MATHS
y=tan^(-1)(5x)/(1-6x^(2)),(-1)/(sqrt(6))...

y=tan^(-1)(5x)/(1-6x^(2)),(-1)/(sqrt(6))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1){(5x)/(1-6x^(2))}-(1)/(sqrt(6))

Differentiate tan^(-1){(5x)/(1-6\ x^2)} , -1/(sqrt(6))ltxlt1/ (sqrt(6)) with respect to x

1/(sqrt(6x-5))

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to

y= tan^(-1)((5x+1)/(3-x-6x^(2))) find dy/dx

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

y= tan^(-1)((5-x)/(6x^(2)-5x-3)) find dy/dx

The value of tan^(-1)((1)/(sqrt(2)))-tan^(-1)((sqrt(5-2sqrt(6)))/(1+sqrt(6))) is equal to