Home
Class 12
MATHS
sqrt(1+(1)/(((dy)/(dx))^(2)))=((d^(2)y)/...

sqrt(1+(1)/(((dy)/(dx))^(2)))=((d^(2)y)/(dx^(2)))^(3/2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Write order and degree (if defined) of each of the following differential equations. sqrt(1-((dy)/(dx))^(2))=(a(d^(2)y)/(dx^(2)))^(1//3)

The degree of the differential Equation (1+((dy)/(dx))^(2))^(3//4)=((d^(2)y)/(dx^(2)))^(1//3)

(d^(2)x)/(dy^(2)) equals: (1)((d^(2)y)/(dx^(2)))^(-1) (2) -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)(3)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-2)(4)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(3)

The degree of the differential equation [1+((dy)/(dx))^(2)]^((3)/(4))=((d^(2)y)/(dx^(2)))^((1)/(3)) is -

(d^(2)x)/(dy^(2)) equals a. ((d^(2)y)/(dx^(2)))^(-1) b. -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3) c. ((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2) d. -((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)

" The Order and degree of "sqrt(1+((d^2y)/(dx^(2)))^3)=(2+(dy)/(dx))^(1/2)" is "

The degree of the differntial equation sqrt(1+(dy/dx)^(1//3))=(d^(2)y)/(dx^(2))

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)