Home
Class 12
MATHS
x sqrt(1 + y) + y sqrt(1 + x) =0implies ...

`x sqrt(1 + y) + y sqrt(1 + x) =0implies (dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((y)/( x))+ sqrt((x)/(y))= 2 implies (dy)/(dx) =

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

The solution of x sqrt(1 - y^(2)) dx + y sqrt(1 - x^(2)) dy = 0 is

The general solution of x sqrt(1 + y^(2)) dx + y sqrt(1 + x^(2)) dy = 0 is

If x sqrt(1+y)+y sqrt(1+x)=0 then the value of (dy)/(dx) is -