Home
Class 12
MATHS
Find (dy)/(dx) when : x="sec"^(-1)(1+...

Find `(dy)/(dx)` when :
`x="sec"^(-1)(1+t^(2))/(1-t^(2)), y="tan"^(-1)(3t-t^(3))/(1-3t^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : x=cos^(-1)(8t^(4)-8t^(2)+1) , y=sin^(-1)(3t-4t^(3))[0 lt t lt (1)/(2)]

Find (dy)/(dx) when : tan y=(2t)/(1-t^(2)), sin x=(2t)/(1+t^(2))

Find (dy)/(dx) where x=cos^(-1)(8t^(4)-8t^(2)+1) and y=sin^(-1)(3t-4t^(3)),[0lt t lt(1)/(2)] .

Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

Find (dy)/(dx), when x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))

Find (dy)/(dx), when x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2))

Find (dy)/(dx), when x=(3at)/(1+t^(2)) and y=(3at^(2))/(1+t^(2))

Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)

Find (dy)/(dx) where x= cos^(-1)(8t^4-8t^2+1) y =sin^(-1)(3t-4t)^3,[0