Home
Class 14
MATHS
int(e^(x))/(x)(1+x log(e)x)dx=...

int(e^(x))/(x)(1+x log_(e)x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion (A) : int(e^(x))/(x) (1 + x log x) dx = e^(x) log x +c. Reason (R) : int e^(x) [f(x) + f'(x)] dx = e^(x) f(x) + c

int (e^(x))/(x)(x log x+1)dx

Evaluate int(x+1)/(x(x+log_(e)x))dx

Evaluate int(x+1)/(x(x+log_(e)x))dx

Evaluate int(x+1)/(x(x+log_(e)x))dx

int x log_(e)(1+x)dx

int x^(x)(1+log_(e)x)dx

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

int log_(e)(1+x)dx