Home
Class 11
MATHS
I=int(dx)/(x[6(log x)^(2)+7log x+2])...

I=int(dx)/(x[6(log x)^(2)+7log x+2])

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(x+x(log x)^(2))

Evaluate: int(dx)/(x{6(log x)^(2)+7log x+2})

int (dx)/(x[(log x)^(2)- 6 log x+5])

int(1)/(x(log x)^(2))dx

int(1)/(x(6(log x)^(2)+7log x+2)dx)

int(1)/((x)(6(log x)^(2)+7log x+2))dx

Evaluate: int(1)/(x{6(log x)^(2)+7log x+2})dx

Evlauate : int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c

Prove that : int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c