Home
Class 12
MATHS
If a+b=1, and a,b>0, then prove that (a+...

If `a+b=1`, and `a,b>0`, then prove that `(a+1/a)^2+(b+1/b)^2geq25/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

If a + b = 1, a gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a+b=1,a>0, prove that (a+(1)/(a))^(2)+(b+(1)/(b))^(2)>=(25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b = 1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a + b - 1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

If a,b, and c are in G.P.then prove that (1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))