Home
Class 12
MATHS
Let lim(xrarr0)(sin2x)/(tan((x)/(k)))=L(...

Let `lim_(xrarr0)(sin2x)/(tan((x)/(k)))=L_(1) and lim_(xrarr0)(e^(2x)-1)/(x)=L_(2),` and the value of `L_(1) L_(2)` is 8, then k is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim_(x to 0) (e^(2x) - 1)/(x) = L_(2) then the value of L_(1)L_(2) is

Let lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim_(x to 0) (e^(2x) - 1)/(x) = L_(2) then the value of L_(1)L_(2) is

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

What is lim_(xrarr0)[e^(x^2]-1]/(x^2)

lim_(xrarr0)(1-cos(2x))/x^(2) = 0.

lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

Evalute lim_(xrarr0)(e^4-sin x-1)/x

lim_(xrarr0)(xe^x -sin2x)/x is :