Home
Class 10
MATHS
[a sin^(2)theta+b cos^(2)theta=c" तो श्म...

[a sin^(2)theta+b cos^(2)theta=c" तो श्मब्द कीजिए कि : "],[qquad tan theta=sqrt((c-b)/(a-c))]

Promotional Banner

Similar Questions

Explore conceptually related problems

a sin^(2)theta+b cos^(2)theta=c then tan^(2)theta

If a sin^(2)theta+b cos^(2)theta=c then tan^(2)theta=

a sin^(2) theta + b cos^(2) theta =c implies tan^(2) theta =

a sin^(2) theta + b cos^(2) theta =c implies tan^(2) theta =

If a sin theta+b cos theta=c then prove that a cos theta-b sin theta=sqrt(a^(2)+b^(2)-c^(2))

Ifa sin theta+b cos theta=C, then prove that a cos theta-b sin theta=sqrt(a^(2)+b^(2)-c^(2))

If : asec^(2) theta - b * tan^(2) theta = c,"then" = sin theta = A) sqrt((a +c)/(b + c) B) sqrt((a -c)/(b - c) C) sqrt((a -c)/(b + c) D) sqrt((a + c)/(b - c)

If sin theta=a/b cos theta=c/d then tan theta=

If a Sin theta + b Cos theta = c then (a-b tan theta)/(b + a tan theta)=

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c int R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The values of tan theta_(1) tan theta_(2) is (given |b| ne |c|)