Home
Class 12
MATHS
If f(x)=x.e^(x(1-x), then f(x) is...

If `f(x)=x.e^(x(1-x),` then f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(1-x) then f(x) is

If f(x)=e^(1-x) then f(x) is

If f(x)=x e^(x(x-1)) , then a) f(x) is increasing on [-1/2,1] b) decreasing on R c) increasing on R (d) decreasing on [-1/2,1]

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

f(x)=e^x-e^(-x) then find f'(x)

f(x)=e^x-e^(-x) then find f'(x)

If f(x) = x^(1//x) , " then: f''(e) is