Home
Class 12
MATHS
f(x)=x^(3) and f(-x)=(-x)^(3)=-x^(3)....

`f(x)=x^(3) and f(-x)=(-x)^(3)=-x^(3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following function is non- differentiable in domain? f(x)=(x-2)/(x^(2)+3) (b) f(x)=log|x|f(x)=x^(3)log x(d)f(x)=(x-3)^((3)/(5))

Suppose that f(x)=x^(3)-3x^(2) and h(x)=[(f(x))/(x-3),x!=3 then K,x=3

If f(x)=log((1+x)/(1-x)) and g(x)=((3x+x^(3))/(1+3x^(2))) then f(g(x)) is equal to f(3x)(b)quad {f(x)}^(3) (c) 3f(x)(d)-f(x)

(2) If f(x)=x+(1)/(x) , then [f(x)]^(3)-f(x^(3)) is equal to

If f(x) = x^(3) - (1)/(x^(3)) then f (x) + f ((1)/(x)) is equal to

If f(x)=x+1/x show that (f(x))^3=f(x^3)+3 f(x)

Let f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))[f(x) is not identically zerol.Then f(4x^(3)-3x)+3f(x)=0f(4x^(3)-3x)=3f(x)f(2x sqrt(1-x^(2))+2f(x)=0f(2x sqrt(1-x^(2))=2f(x)

Let f be a function such that f(3)=1 and f(3x)=x+f(3x-3) for all x. Then find the value of f(300).

If f(x) = (x^(2)-4x+3)/(3x^(2)-10x+3), x!= 3 is continuous at x = 3 , then f(3) = ….