Home
Class 12
MATHS
" (viii) "f(x)={[|x-a|sin((1)/(x-a)),," ...

" (viii) "f(x)={[|x-a|sin((1)/(x-a)),," for "x!=aquad " at "x=a],[0,," for "x=a]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={|x-a|sin(1/(x-a)),\ \ \ for\ x!=a,\ \ \ 0\ \ \ if\ x=a at x=a

If f(x)=sin((1)/(x)), then at x=0

The function f(x)=(x-a)"sin"(1)/(x-a) for x!=a and f(a)=0 is :

Test for continuity of the following function at x=a:f(x)={(x- a) sin((1)/(x-a), where x!=a(x-a)0, when x=a

Discuss the continuity of f(x)={x^(2)sin((1)/(x)),quad x!=0quad 0,quad x= at x=0

If the function f(x) defined by f(x)={(x"sin"(1)/(x)",", "for "x ne 0),(k",", "for " x=0):} is continuous at x = 0, then k is equal to

Let the function f,g and h be defined as follows f(x)={x sin((1)/(x)), for -1<=x<=1 and x!=0g(x)={x^(2)sin((1)/(x)) for -1<=x<=1 and x!=0,0, for x=0 and h(x)=|x|^(3), for -1<=x<=1 Which of these functions are differentiable at x=0?

Show that the function f(x)={x^(m)sin((1)/(x)),quad x!=00,quad x= is differentiable at x=0, if m>1

f(x) = (x - [x]) sin ((1)/(X)) , at x = 0 , f is

Examine for continuity, each of the following functions: f(x) = {:{((x-a) sin (1/(x-a)), x ne a), (0, x = a):} at x = a