Home
Class 12
MATHS
If (pi)/(2) and (pi)/(4) are the argumen...

If `(pi)/(2)` and `(pi)/(4)` are the arguments of `z_(1)` and `barz_(2)` respectively , then Arg `(z_(1))/(z_(2))` =

A

`(3pi)/(4)`

B

`(pi)/(4)`

C

`pi`

D

`(pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise EXERCISE -II|126 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|17 Videos
  • CIRCLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|164 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise (Level-2)|38 Videos

Similar Questions

Explore conceptually related problems

If (pi)/(5) and (pi)/(3) are respectively the arguments of barz_(1) and z_(2) , then the value of Arg (z_(1)- z_(2)) is

If pi//3 and pi//4 are the arguments of z_1 and barz_2 then the value of arg (z_1.z_2)

If z _(1) =- 1, z _(2) = i, then find Arg ((z _(1))/( z _(2))).

If z _(1) =- 1, and z _(2) =- i, then find Arg (z _(1) z _(2))

If z_(1)=-1,z_(2)=i then find Arg ((z_(1))/(z_(2)))

If pi//5 and pi//3 are the arguments of barz_1 and z_2 then the value of arg (z_1)+arg (z_2) is

If 2pi//3 and pi//6 are the arguments of barz_1 and z_2 then value of arg (z_1//z_2) is

If the Arg bar z_(1) and Arg z_(2) are (pi)/(5) and (pi)/(3) respectively,find (Arg z_(1)+Argz_(2))

If z_(1)=-1 and z_(2)=-i , then find Arg (z_(1)z_(2))

If z_(1) , z_(2) are conjugate complex numbers and z_(3) , z_(4) are also conjugate , then Arg ((z_(3))/(z_(2)))=