Home
Class 12
MATHS
z=1+isqrt(3)rArr|Arg z|+|Argbarz|=...

`z=1+isqrt(3)rArr|Arg z|+|Argbarz|=`

A

0

B

`(pi)/(3)`

C

`(pi)/(2)`

D

`(2pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise EXERCISE -II|126 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|17 Videos
  • CIRCLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|164 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise (Level-2)|38 Videos

Similar Questions

Explore conceptually related problems

If z ne0 , find Arge z+Arg bar z

Represent the complex number z=1+isqrt(3) in the polar form.

If z=sqrt((1-i)/(1+i)) then Arg z =

If z=1+isqrt(3) then match the following {:(I,Arg(z),"a)"5pi//6),(II.,Arg(iz),"b)"-pi//3),(III.,Arg(barz),"c)"pi),(IV.,Arg(ibarz),"d)"pi//6),(,,"e)"pi//3):}

The complex numbers z_(1) , z_(2) and z_(3) satisfying (z_(1) - z_(3))/(z_(2) - z_(3)) = (1 - isqrt3)/(2) are the vertices of a triangle which is

If the Arg bar z_(1) and Arg z_(2) are (pi)/(5) and (pi)/(3) respectively,find (Arg z_(1)+Argz_(2))

If z_(1), z_(2) are two non-zero complex numbers satisfying |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , show that Arg z_(1) - Arg z_(2)=0

A : If argument of z_1=pi//3 , argument of z_2=pi//4 then argument of z_1z_2" is " 7pi//12 R : Arg (z_1z_2)=Arg z_1+Argz_2