Home
Class 12
MATHS
If |z(1) | = |z(2)| = 1 , then |z(1) + z...

If `|z_(1) | = |z_(2)| = 1` , then `|z_(1) + z_(2)| =`

A

`|(1)/(z_(1)) + (1)/(z_(2))|`

B

`| (1)/(z_(1)) - (1)/(z_(2))|`

C

`| (1)/(z_(1)) * (1)/(z_(2))|`

D

`| (1)/(z_(1)^(2)) + (1)/(z_(2)^(2)))|`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise EXERCISE -II|126 Videos
  • CIRCLES

    AAKASH SERIES|Exercise PRACTICE EXERCISE|164 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise (Level-2)|38 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)| = |z_(2)| = |z_(3)| = … |z_(n)| = 1 , then |z_(1) + z_(2) + z_(3) + ….. + z_(n) | =

If |z_1|=|z_2|=1 , then |z_1+z_2| =

If |z^(2) - 1| = |z|^(2) + 1 , then z lies on

If z_(1) , z_(2) are two complex numbers satisfying |(z_(1) - 3z_(2))/(3 - z_(1) barz_(2))| = 1 , |z_(1)| ne 3 then |z_(2)|=

If z^(1) =2 -I, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|

If z_(1) , z_(2) are complex numbers and if |z_(1) + z_(2)| = |z_(1) - z_(2)| show that are (z_(1)) - arg (z_(2)) = pm (pi)/(2)

If |z_(1) + z_(2)| = |z_(1) - z_(2)| then the difference in the arguments of z_(1) and z_(2) is

If z_(1) , z_(2) are complex numbers and if |z_(1) + z_(2)| = |z_(1)| - |z_(2)| show that arg (z_(1)) - arg (z_(2)) = pi .