Home
Class 12
MATHS
If m, n integers and x = cos alpha + i ...

If m, n integers and ` x = cos alpha + i sin alpha , y = cos beta + i sin beta, ` then prove that ` x^(m) y^(n) + 1/(x^(m)y^(n)) = 2 cos ( m alpha + n beta) " and " x^(m) y^(n) - 1/(x^(m) y^(n)) = 2 i sin ( m alpha + n beta)`.

Text Solution

Verified by Experts

The correct Answer is:
`therefore x^m.y^n+(1)/(x^m.y^n)=cis (m alpha +n beta)+cis(m alpha-n beta)`
`=2cos(m alpha+n beta)`
Promotional Banner

Topper's Solved these Questions

  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|3 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise EXERCISE - 6 (VERY SHORT ANSWER QUESTIONS)|17 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise (Level-2)|38 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH SERIES|Exercise Practice Exercise|62 Videos

Similar Questions

Explore conceptually related problems

If x=cos alpha+i sin alpha,y=cos beta+isinbeta, then x/y-y/x=

If x=cos alpha+i sin alpha,y=cos beta+isinbeta, then (x-y)/(x+y)=

If x= sin alpha + sin betga , y = cos alpha + cos beta tan alpha + tan beta =

If x=cosalpha+isinalpha,y=cosbeta+isinbeta," then "x^(m).y^(n)+(1)/(x^(m).y^(n))

Simplify ((cos alpha + i sin alpha)^(4))/(sin beta + i cos beta)^(8)

If tan alpha - tan beta =m and cot alpha - cot beta =n , then prove that cot ( alpha - beta )= (1)/(m)- (1)/(n)

If x=r cos alpha cos beta cos gamma , y= cos alpha cos beta sin gamma , z= r sin alpha cos beta , mu = r sin beta " then " x^(2)+y^(2) + z^(2)+mu^(2)=

(i) sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta) (ii) sin (alpha-beta)= sin alpha cos beta- cos alpha sin beta Proof

If cos x - sin alpha cot beta sin x = cos alpha then the value of tan(x//2) is