Home
Class 12
MATHS
If n is a positive integer prove that (1...

If n is a positive integer prove that `(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos((n pi)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
`2^(n+1).cos((n pi)/(2))`
Promotional Banner

Topper's Solved these Questions

  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|3 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise EXERCISE - 6 (VERY SHORT ANSWER QUESTIONS)|17 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise (Level-2)|38 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH SERIES|Exercise Practice Exercise|62 Videos

Similar Questions

Explore conceptually related problems

A : (1+i)^(6)+(1-i)^(6)=0 R : If n is a positive integer then (1+i)^(n)+(1-i)^(n)=2^((n//2)+1).cos""(npi)/(4)

If n is a positive integer, show that (1 + i)^(n) + (1 - i)^(n) = 2 ^((n+2)/2) cos ((npi)/4) .

If n is a positive integer, then (1+i)^n+(1-i)^n=

If n is integer then show that (1 + i)^(2n) + (1 - i)^(2n) = 2 ^(n+1) cos . (npi)/2 .

If n is a positive integer and (1+i)^(2n)+(1-i)^(2n)=kcos(npi//2) then the value of k is

If n is a positive integer, prove that 1-2n +(2n(2n-1))/(2!) - (2n(2n-1) (2n-2))/(3!) +… + (-1)^(n-1) (2n(2n-1) …(n+2))/((n-1)!) = (-1)^(n+1) ((2n)!)/(2(n!)^(2))

If n is a positive integer, prove that sum_(r=1)^(n)r^(3)((""^(n)C_(r))/(""^(n)C_(r-1)))^(2)=((n)(n+1)^(2)(n+2))/(12)

If n is a positive integer, show that ( P + iQ)^(1//n) + ( P - iQ)^(1//n) = 2 ( P^(2) + Q^(2))^(1//2n) cos (1/n , tan . Q/P) .

If n is a positive integer and (1+isqrt3)^(n)+(1-isqrt3)^(n)=2^(n+1)costheta , then the value of theta is