Home
Class 12
MATHS
If x=cis alpha ,y=cis beta , then find ...

If `x=cis alpha ,y=cis beta` , then find
`x^4y^3+(1)/(x^4y^3)`

Text Solution

Verified by Experts

The correct Answer is:
`2cos(4alpha+3beta)`
Promotional Banner

Topper's Solved these Questions

  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise EXERCISE - 6 (SHORT ANSWER QUESTIONS)|24 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise EXERCISE - 6 (LONG ANSWER QUESTIONS)|21 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|3 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Exercise (Level-2)|38 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH SERIES|Exercise Practice Exercise|62 Videos

Similar Questions

Explore conceptually related problems

If x=cis alpha ,y=cis beta , then find xy+(1)/(xy)

If x=cisalpha,y=cisbeta" then " x^3y^4-(1)/(x^3y^4)=

If x + iy = cis alpha .cisbeta, then find the valeu of x ^(2) + y ^(2).

If x=cos alpha+i sin alpha,y=cos beta+isinbeta, then (x-y)/(x+y)=

If x=cos alpha+i sin alpha,y=cos beta+isinbeta, then x/y-y/x=

Find (3x+4y)^2 .

If cis alpha.cis beta.cis gamma=cis x then the value of x is

If A, B, C are angles of a triangle such that x = cis A , y = cis B , z = cis C , then find the value of xyz.

If A,B,C are angles of a triangle such that x = cis A , y = cis B , z = cis C , then find the value of xyz .