Home
Class 12
MATHS
int (tanx)/(sqrt(a+b tan^(2)x))dx=...

`int (tanx)/(sqrt(a+b tan^(2)x))dx=`

A

`(1)/(sqrt(b-a))Cos^(-1)[sqrt((b-a)/(b))cosx]+c`

B

`-(1)/(sqrt(b-a))Cos^(-1)[sqrt((b-a)/(b))cosx]+c`

C

`(2)/(sqrt(b-a))Cos^(-1)[sqrt((b-a)/(b))cosx]+c`

D

`-(2)/(sqrt(b-a))Cos^(-1)[sqrt((b-a)/(b))cosx]+c`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

int (sec^(2)x)/(sqrt(a+b tan x))dx=

int e^(x) (tan x tan^(2) x ) dx =

int (sec x)/( sqrt(sec x+ tan x))dx=

int (x)/(sqrt(x^(2)+1))dx=

f(x)=(tanx)/(sqrt(1+tan^(2)x)) and f((pi)/(2)-)=a,f((pi)/(2)+)=b then

inte^(x)(tanx+tan^(2)x)dx=

int (tanx)/(1+tan^(2)x)dx=

If int ( 2dx)/(sqrt(cot^2x - tan^2 x) ) = - sqrt(f(x) ) + c , then f(x) =

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =