Home
Class 12
MATHS
int (1)/(x^(4)+1)dx=A tan^(-1)((x^(2)-1)...

`int (1)/(x^(4)+1)dx=A tan^(-1)((x^(2)-1)/(sqrt(2)x))-B log|(x^(2)-sqrt(2)x+1)/(x^(2)+sqrt(2)x+1)|+C` then

A

A) `A=2B`

B

B) `A=-2B`

C

C) `2A=B`

D

D) `2A=-B`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

int (x)/(sqrt(x^(2)+1))dx=

(log(x+sqrt(x^(2)+1)))/(x) is

int((2x-1)^(2)(x+3))/(sqrt(x))dx

tan^(-1)(x+sqrt(1+x^(2)))=

int (1)/(x^(2)sqrt(1+x^(2)))dx=

int(x^(2))/(sqrt(1+x^(2))(1+sqrt(1+x^(2))))dx

int_(-1)^(1)(x^(2) sin^(-1)x)/(sqrt(1-x^(2)) dx

int (dx)/((x-1)sqrt(x^(2)-1))=