Home
Class 12
MATHS
If phi(x)=intcot^(4)x dx+(1)/(3)cot^(3)x...

If `phi(x)=intcot^(4)x dx+(1)/(3)cot^(3)x-cotx` and `phi((pi)/(2))=(pi)/(2)` then `phi(x)=`

A

`pi-x`

B

`x-pi`

C

`(pi)/(2)-x`

D

`x`

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2)) (1)/(1 + cot x)dx

Solve tan 2x =- cot (x + (pi)/(3))

If tan((pi)/(4)+(y)/(2))=tan^(3)((pi)/(4)+(x)/(2)) then (3+sin^(2)x)/(1+3sin^(2)x)=

If :"Tan"^(-1)(2x)/(1-x^(2))+Cot^(-1)((1-x^(2))/(2x))=(pi)/3,xgt0 then

If f(x)=x^(2), phi(a)=b^(2),f^(1)(a)=n phi^(1) and phi^(1)(a)=ne0 , then Lt_(x to a)(( sqrt(f(x))-a)/(sqrt(phi(x))-b))=

underset (x to (pi)/(4))(Lt) (1-cot^(3)x)/(2-cotx-cot^(3)x)=

int(cosx+sinx)/(sqrt(1+sin2x))dx,x in[-(pi)/(4),(3pi)/(4)]

If Tan^(-1)((x-1)/(x-2))+Cot^(-1)((x+2)/(x+1))=pi/4 , then x =