Home
Class 12
MATHS
A:int tan^(4)x sec^(2)x dx=(1)/(5)tan^(5...

`A:int tan^(4)x sec^(2)x dx=(1)/(5)tan^(5)x+c`
`R:int[f(x)]^(n) f'(x) dx=([f(x)]^(n+1))/(n+1)+c`

A

Both A and R are true and R is the correct explanation of A

B

Both A and R are true and R is not correct explanation of A

C

A is true R is false

D

A is false but R is true.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

int (sec^(2)x)/((sec x+ tan x)^(5))dx=

A: int e^(x)((1+x log x)/(x))=e^(x)log x+c R: int e^(x)[f(x)+f'(x)]dx=e^(x)f(x)+c

int (1)/(sec x+ tan x)dx=

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

A:int_(0)^(pi//4)(tan^(6)x+tan^(4)x)dx=(1)/(5) R:int_(0)^(pi//4)(tan^(n)x+tan^(n-2)x)dx=(1)/(n-1)

Observer the following statements : A : int (x^(2)-1)/(x^(2)) e^((x^(2)+1)/(x))dx=e^((x^(2)+1)/(x))+c R: int f'(x)e^(f(x))dx=f(x)+c Then which of the following is true ?

If int x^(3) e^(5x)dx=(e^(5x))/(5^4)(f(x))+c , then f(x)=

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is