Home
Class 12
MATHS
A: int (1)/(3+4cosx)dx=(1)/(sqrt(7))log|...

`A: int (1)/(3+4cosx)dx=(1)/(sqrt(7))log|(sqrt(7)+tan(x//2))/(sqrt(7)-tan(x//2))|+c`
R : If `a lt b` then `int(dx)/(a+b cosx)=`
`(1)/(sqrt(b^(2)-a^(2)))log|(sqrt(b+a)+sqrt(b-a)tan(x//2))/(sqrt(b+a)-sqrt(b-a)tan(x//2))|+c`

A

Both A and R are true and R is the correct explanation of A

B

Both A and R are true and R is not correct explanation of A

C

A is true R is false

D

A is false but R is true.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

A: int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"Tan"^(-1)((1)/(sqrt(5))"tan" (x)/(2))+c R: If a gt b then int (dx)/(a+b cosx)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(sqrt(a-b))/(a+b)"tan"(x)/(2)]+c

A: int (1)/(4+5 sinx)dx=(1)/(3)log|(2tan(x//2)+1)/(2tan(x//2)+4)|+c R : If 0 lt a lt b , then int(dx)/(a+b sin x)=(1)/(sqrt(b^(2)-a^(2)))log|(a tan (x//2)+b-sqrt(b^(2)-a^(2)))/(a tan (x//2)+b+sqrt(b^(2)-a^(2)))|+c

A: int (1)/(5+4 sin x)dx=(2)/(3) Tan^(-1)((4+5tan (x//2))/(3))+c R : If a gt 0, a gt b , then int (dx)/(a+b sin x)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(b+a tan (x//2))/(sqrt(a^(2)-b^(2)))]+c

int (tanx)/(sqrt(a+b tan^(2)x))dx=

int (dx)/((1+x)sqrt(8+7x-x^(2)))=

tan^(-1)(x+sqrt(1+x^(2)))=

d/(dx) ("Tan"^(-1) (x)/(sqrt(a^2 - x^2))) =