Home
Class 12
MATHS
The integral int x cos^(-1)((1-x^(2))/(1...

The integral `int x cos^(-1)((1-x^(2))/(1+x^(2)))dx (x gt 0)` is equal to:

A

`-x+(1+x^(2))tan^(-1)x+c`

B

`x-(1+x^(2))cot^(-1)x+c`

C

`-x+(1+x^(2))cot^(-1)x+c`

D

`x-(1+x^(2))tan^(-1)x+c`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integrals. int ( x + (1)/(x))^(3) dx (x gt 0)

The integral int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx is equal to

Evalute the following integrals int cos^(-1) ((1 - x^(2))/(1 +x^(2))) dx

the integral int (2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to

Evaluate the integral int_(0)^(1) (log(1+x))/(1+x^(2))dx

Evaluate the integrals . I=int_(0)^(1) (x^(2))/(x^(2)+1)dx

Evaluate the integral int_(0)^(1) sin^(-1) ((2x)/(1+x^(2))) dx

Evaluate the integrals. int [ (2x - 1)/(3 sqrt(x)) ]^(2) " dx , " (x gt 0 )

The integral int (1+x-(1)/(x))e^(x+1//x) dx is equal to

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =