Home
Class 12
MATHS
If int (log(t+sqrt(1+t^(2))))/(sqrt(1+t^...

If `int (log(t+sqrt(1+t^(2))))/(sqrt(1+t^(2)))dt=(1)/(2)(g(t))^(2)+C`, where C is a constant, then g(2) is equal to:

A

A) `(1)/(sqrt(5)) log(2+sqrt(5))`

B

B) `(1)/(2)log(2+sqrt(5))`

C

C) `2log(2+sqrt(5))`

D

D) `log(2+sqrt(5))`

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx =(gof)(x)+c then

If y = int_(0)^(x) (t^(2))/(sqrt(t^(2)+1))dt then (dy)/(dx) at x=1 is

If x = (2at)/(1 + t^2) , y = (a(1-t^2) )/(1 + t^2) , where t is a parameter, then a is

int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6) , then t=

The solution of int_(sqrt(2))^(x) (dt)/(tsqrt(t^(2)-1))=pi/12 is

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=

If x=a[(1-t^(2))/(1+t^(2))],y=(2bt)/(1+t^(2) then find dy/dx .