Home
Class 12
MATHS
Let I(n)=int tan^(n)x dx, (n gt 1). If I...

Let `I_(n)=int tan^(n)x dx, (n gt 1)`. If `I_(4 ) +I_(6)=a tan^(5)x+bx^(5)+C`, where C is a constant of integration, then the ordered pair (a, b) is equal to :

A

A) `(-(1)/(5), 1)`

B

B) `((1)/(5),0)`

C

C) `((1)/(5), -1)`

D

D) `(-(1)/(5),0)`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n) = int tan^(n) " x dx then " I_(0) + 2I_(2) + I_(4) =

If I_(n) = int Cot^(n) xdx then I_(4) + I_(6) =

If I_(n) = int cos^(n) x dx , then 6I_(6) -5I_(4) =

If I_(n) = int sin^(n)x dx , then nI_(n)-(n-1)I_(n-2)=

If I_(n) = int Sec^(n) x dx then I_(8) - (6)/(7) I_(6) =

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If int (dx)/(cos^(3) x sqrt(2 sin 2x)) = (tan x)^(A) + C(tan x)^(B) + k , where K is a costant of integration , then A+B + C equls :

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

For any integer n ge 2 , let I_(n) = int tan^(n) xdx . If I_(n) =1/a tan^(n-1)x - bI_(n-2) for n ge 2 , then the ordered pair (a,b) equals to