Home
Class 12
MATHS
The greatest value of f(x)=int(1)^(x)|t|...

The greatest value of `f(x)=int_(1)^(x)|t|dt` on the interval `[-(1)/(2), (1)/(2)]` is :

A

`(3)/(8)`

B

`-(3)/(8)`

C

`-(1)/(2)`

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of f(x)=(x+1)^(1//3) on [0,1] is

The greatest value of f(x)=(x+1)^(1//3)-(x-1)^(1//3) on [0,1] is

If f(x) =int_(-1)^(x) |t|dt then for any x ge 0, f(x)=

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval [0,(pi)/(2)] is

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

let f(x)=int_(0)^(x)(cost)/(t)(x gt 0) then for x=(2n+1)(pi)/(2), f(x) has :