Home
Class 12
MATHS
let f(x)=int(0)^(x)(cost)/(t)(x gt 0) t...

let `f(x)=int_(0)^(x)(cost)/(t)(x gt 0)` then for `x=(2n+1)(pi)/(2), f(x) ` has :

A

maxima when `n = 0, 2, 4, 6, …..

B

minima when n = 0, 2, 4, 6, ….

C

neither maxima nor minima when n = -1, -3, -5, ….

D

Information not sufficient

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)e^(t^(2))(t-2)(t-3)dt for all x in(0,oo) , then

If f(x) =int_(-1)^(x) |t|dt then for any x ge 0, f(x)=

If f(x) int_(0)^(k) (Cos x)/(1+Sin^(2)x)dx= pi/4 then K=

Let f be a real -valued function defined on the interval (-1, 1) such that e^(-x)f(x) = 2+int_(0)^(x) sqrt(t^(4) + 1)dt for all x in (-1, 1) and let f^(-1) be the inverse function of f. then show that (f^(-1)(2))^1 = (1)/(3)

Let f(x)=(x-1)^(4)(x-2)^(n) , n inN . Then f(x) has

The point of extremum of f(x)=int_(0)^(x)(t-2)^(2)(t-1)dt is a