Home
Class 12
MATHS
Lt(x to oo) ((int(0)^(x) e^(t) dt)^(2))/...

`Lt_(x to oo) ((int_(0)^(x) e^(t) dt)^(2))/(int_(0)^(x)e^(2t^(2))dt)`

A

1

B

-1

C

0

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1) x e^(-x^(2))dx

Lt_(xto0)((int_(0)^(x)tan^(2)tsec^(2)tdt)/(x^(3)))=

Lt_(x to oo)(x^(n))/(e^(x))=0 for

I= int_(0)^(1)e^(x^(2))dx rArr

Lt_(xto0)(int_(0)^(x^(2))sinsqrttdt)/(x^(3))=

int_(0)^(oo)e^(-xlog2)dx=

int_(0)^(oo)[(2)/(e^(x))]dx=

If int_(0)^(b)(dx)/(1+x^(2))=int_(b)^(oo)(dx)/(1+x_(2)), then b=

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=