Home
Class 12
MATHS
If g(x) = int(0)^(x) cos 4(t) dt , then ...

If `g(x) = int_(0)^(x) cos 4(t) dt `, then `g(x+pi)` equals

A

`(g(x))/(g(pi))`

B

`g(x)+g(pi)`

C

`g(x)-g(pi)`

D

`g(x).g(pi)`

Text Solution

Verified by Experts

The correct Answer is:
2,3
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

int_(0)^(pi) cos^(3) x dx =

int_(0)^(pi) cos^(5) x dx=

int_(0)^(pi) cos^(8) x dx=

For x in R, x != 0 , if y(x) is a differentiable function such that x int_(1)^(x) y(t) dt=(x+1)int_(1)^(x)ty (t) dt , then y(x) equals: (where C is a constant.)

If f(x) = int_1^x (1)/(2 + t^4) dt ,then