Home
Class 12
MATHS
The integral int(7pi//4)^(7pi//3) sqrt(t...

The integral `int_(7pi//4)^(7pi//3) sqrt(tan^(2)x)dx ` is equal to :

A

`log 2sqrt(2)`

B

log 2

C

2 log 2

D

`log sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I : The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to (pi)/(6) Statement II : int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

int_(pi//6)^(pi//3)(1)/(1+tan^(3)x)dx=

The integral int_((pi)/(4))^((3pi)/(4))(dx)/(1+cosx) is equal to

The value of I=int_(-pi//2)^(pi//2)sqrt(cosx-cos^(3)x)dx is

Evaluate int_((-pi)/4)^(pi/4)sin^(2)x dx

Evaluate the integral int_(3)^(7) sqrt((7-x)/(x-3))dx

int_(0)^(pi//4) [sqrt(tan x)+sqrt(cot x)]dx

Evaluate the integral int_(0)^(pi//2) tan^(5)x cos^(8)x dx