Home
Class 12
MATHS
If for n gt 1, P(n)=int(1)^(e ) ( logx)^...

If for `n gt 1, P_(n)=int_(1)^(e ) ( logx)^(n)dx`, then `P_(10)-90P_(8)` is equal to:

A

A) `-9`

B

B) 10e

C

C) `-9e`

D

D) 10

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

int_(1//e)^(e)|logx|dx=

If I_(m,n) - int (x^(m) (logx)^(n) dx then I_(m,n) - (x^(m+1))/((m + 1)) (logx)^(n) =

If I_(n) = int (sin nx)/(sin x)dx where n gt 1 , then I_(n)-I_(n-2)

sum_(n=1)^(100) int_(n-1)^(n) e^(x-[x])dx=

If I_(n)=int x^(n)*e^(cx)dx for n le1 then c*I_(n)+n*I_(n-1)=c

(1 + x)^(n) = p_(0) + p_(1) x + p_(2) x^(2) + … + p_(n) x^(n) , then p_(0) + p_(3) + p_(6) + ….. =