Home
Class 12
MATHS
If for a continuous function f(x), int...

If for a continuous function f(x),
`int_(-pi)^(t) (f(x)+x)dx=pi^(2)-t^(2)`, for all `t ge -pi`, then `f(-(pi)/(3))` is equal to :

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(3)`

D

`(pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is an even function then int_(-pi)^(pi)f(x)sinnxdx=

The function f(x)=(In(pi+x))/(In(e+x)) is

The function F(x)=int_(0)^(pi)log((1-x)/(1+x))dx is

If f(x)=|x|^(|sinx|) then f^1(-pi/4) is equal to

int_(-pi)^(pi) (Cos a x - Sin a x)^(2) dx=

int_(0)^(pi) x f (sin x) dx is equal to

If k int_(0)^(1) x f (3 x) dx = int_(0)^(3) t f(t) dt then k=

If f(x)=int_(0)^(x)e^(t^(2))(t-2)(t-3)dt for all x in(0,oo) , then