Home
Class 12
MATHS
int (1)/(sqrt(9x^(2)-25))dx=...

`int (1)/(sqrt(9x^(2)-25))dx=`

Text Solution

Verified by Experts

The correct Answer is:
`((3x)/(5)) + c`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL SOLVED EXAMPLES|3 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 1.1(VERY SHORT ANSWER QUESTIONS)|45 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int (1)/(sqrt(4-9x^(2))dx=

Evaluate int(2)/(sqrt(9x^(2)+25))dx

int (1)/(sqrt(3-x^(2)+2x) dx=

int (1)/(x+sqrt(x^(2)+1))=dx

int sqrt(x^(2)-25)dx=

Evaluate the following integrals. int(3)/(sqrt(9x^(2)-1))dx

int (x)/(sqrt(x^(2)+1))dx=

Evaluate the integerals. int (3)/(sqrt(9x^(2) -1))dx on ((1)/(3), oo).

Evaluate int(1)/(sqrt(4-9)x^(2))dx

int (x+1)/(sqrt(x^(2)+2x+3))dx=