Home
Class 12
MATHS
Evaluate int (1)/(x l (x ) l^(2) (x ) .....

Evaluate `int (1)/(x l (x ) l^(2) (x ) ....l^(n) (x))` dx
where `l^(n) (x) = log_(e) log_(e) ....... Log_(e)`(x ) (n times)

Text Solution

Verified by Experts

The correct Answer is:
`l^((n+1)) ` (x) + c
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 1.1(VERY SHORT ANSWER QUESTIONS)|45 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 1.2(VERY SHORT ANSWER QUESTIONS)|57 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(e) ((ln x )^(3))/(x) dx=

int e^(x log a) e^(x)dx=

Evaluate Lt_(x to 1)(log_(e)x)/(x - 1)

Domain of log_(e)|log_(e)x| is:

int_(1)^(e)(ln x)/(x^(2))dx=

(d)/(dx) {log ((x ^(2))/(e ^(x)))}=

Evaluate int [ " log" (log x) + (1)/((log x )^(2)) ] dx

int_(2)^(e) ((1)/(ln x) - (1)/((ln x)^(2)))dx=

If int e^(x).2^(3 log_(2)x) dx = e^(x). f(x) + C then f(x)=

int e^(x)( log x+(1)/(x^(2)))dx=