Home
Class 12
MATHS
int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-...

`int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=`

Text Solution

Verified by Experts

The correct Answer is:
ln `tan^(-1) ( x + (1)/(x)) + c `
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL INFORMATION|12 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int (x^(2)+1)/(x^(4)+x^(2)+1)dx=

int (x^(2))/(x^(4)+1)dx=

int (x^(2) +1)/(x^(4) + x^(2) + 1) dx =

int_(-1)^(3)(Tan^(-1)""(x)/((x^(2)+1))+Tan^(-1)""(x^(2)+1)/(x))dx=

If x gt 0 then int ("tan"^(-1) (x)/(x^(2) + 1) + "tan"^(-1) " "(x^(2) +1)/(x) ) dx =

int (e^(x)(x^(2)+1))/((1+x)^(2))dx=

int Tan^(-1)((2x)/(1-x^(2)))dx=

int (x^(4) + x^(2) +1)/(x^(2) + 1) dx =