Home
Class 12
MATHS
If I(n) = int x^(-n) e^(ax) dx then prov...

If `I_(n) = int x^(-n) e^(ax) dx` then prove that `I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)`

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL INFORMATION|12 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int x^(n) e^(-x) dx prove that I_(n) = -x^(n) e^(-x) + nI_(n-1)

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

Show that If I _(n) =int cos ^(n) x dx, then show that I_(n) =1/n cos ^(n-1) x sin x + (n-1)/(n ) I_(n-2).

If I_(n)=int x^(n)*e^(cx)dx for n le1 then c*I_(n)+n*I_(n-1)=c

If I_(n) = int Sec^(n) x dx then I_(8) - (6)/(7) I_(6) =

If I_(n)= int (e^(ax))dx/(x^(n)) , then I_(n)=

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=