Home
Class 12
MATHS
int (2)/(x [1 + (log x)^(2)]) dx =...

`int (2)/(x [1 + (log x)^(2)]) `dx =

A

`tan^(-1) `(log x ) + c

B

`- 2 tan^(-1) ` (log x ) + c

C

`2tan^(-1) ` (log x ) + c

D

`- tan^(-1)` ( log x ) + c

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|16 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Evalute the following integrals int (1)/(x) ("log x")^(2) dx

int (1)/(log x)-(1)/((log x)^(2))dx=

int (dx)/(x(1+log x)^(3))=

Evalute the following integrals int ((x +1)(x + "log x")^(2))/(x ) dx

int (1)/(x log x [log (log x)])dx on (1, oo).

Evalute the following integrals int (1)/(x (2 + 3" log x")) dx

int (log x-1)/((log x)^(2))dx=