Home
Class 12
MATHS
int (1)/(x^(2)) e^((x - 1)/(x)) dx =...

`int (1)/(x^(2)) e^((x - 1)/(x)) ` dx =

A

`e^((x)/(x -1)) + c `

B

`e^((x- 1)/(x)) ` + c

C

`- e^((x)/(x - 1)) +c`

D

`- e^((x-1)/(x)) + c `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|16 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

Find int (1- (1)/(x^(2)))e^((x+(1)/(x)))dx on I where I=(0,oo).

Find int (1-(1)/(x^2))e^((x+(1)/(x)))dx on I where I=(0,oo) .

int (1)/(x^(2)(x+1))dx=

Observer the following statements : A : int (x^(2)-1)/(x^(2)) e^((x^(2)+1)/(x))dx=e^((x^(2)+1)/(x))+c R: int f'(x)e^(f(x))dx=f(x)+c Then which of the following is true ?

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

int_(1)^(2)(e^(x)(1+x log x))/(x) dx=

int (x +1)/(x^(2) + 1) dx =