Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
INDEFINITE INTEGRALS
AAKASH SERIES|Exercise EXERCISE -II|157 VideosINDEFINITE INTEGRALS
AAKASH SERIES|Exercise PRACTICE EXERCISE|167 VideosINDEFINITE INTEGRALS
AAKASH SERIES|Exercise ADDITIONAL EXERCISE|16 VideosHYPERBOLA
AAKASH SERIES|Exercise Exercise|6 VideosLOGARITHMIC SERIES
AAKASH SERIES|Exercise EXERCISE - III|8 Videos
Similar Questions
Explore conceptually related problems
AAKASH SERIES-INDEFINITE INTEGRALS -EXERCISE - I
- If int (1)/(x^(2) - 13x+ 42) "dx = log " |(x - a)/(x - b)| + C then a...
Text Solution
|
- int (e^(x))/((e^(x)+2)(e^(x)-1))dx=
Text Solution
|
- int (sinx)/(cos x(1+ cos x))dx= f(x)+ c rArr f(x)=
Text Solution
|
- If int (x^(2) + 2)/((x^(2) + 1)(x^(2) + 4)) dx = A tan^(-1) x + B t...
Text Solution
|
- If int x^(3) e^(-x) " dx = " - e^(-x) [ ax^(3) + bx^(2) + cx + d] K t...
Text Solution
|
- If int x^(3) e^(2) dx = e^(K)l + c then K , l =
Text Solution
|
- int e^("log "x) cos x dx =
Text Solution
|
- int x^(2) sin^(2) x dx =
Text Solution
|
- int xSec^(2) 2x dx =
Text Solution
|
- If int log(10) xdx = K.xlogf(x) + c then K.f(x) =
Text Solution
|
- int e^(x) [Secx +log (Secx + tan x)] dx =
Text Solution
|
- int e^(-x) cosecx (Cotx + 1) dx =
Text Solution
|
- Evaluate the integerals. int e ^(x) ((1+ x log x)/(x)) dx on (0,o...
Text Solution
|
- int e^(x) (tan x tan^(2) x ) dx =
Text Solution
|
- inte^(x)(1-cotx+cot^(2)x)dx=
Text Solution
|
- int(x+1)^(2)e^(x)dx=
Text Solution
|
- If I(n) = int sin^(n)x dx, then nI(n)-(n-1)I(n-2)=
Text Solution
|
- Evalute the following integrals int "cosec"^(4) xdx
Text Solution
|
- If I(n) = int cos^(n) x dx, then 6I(6) -5I(4) =
Text Solution
|
- If I(n) = int Cot^(n) xdx then I(4) + I(6) =
Text Solution
|