Home
Class 12
MATHS
int e^(x) [Secx +log (Secx + tan x)] dx ...

`int e^(x)` [Secx +log (Secx + tan x)] dx =

A

`e^(x)` Secx+c

B

`e^(x)` logsecx + c

C

`e^(x)` log (Secx + tanx) + c

D

`e^(x)` logtanx + c

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|16 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int sec x log (sec x+ tan x)dx=

int e^(x) (tanx - log cosx ) dx =

Evaluate the integerals. int sec x log (sec x + tan x) dx on (0,(pi)/(2)).

int e^(x) (x+1) log x dx=

int sinx .log(Secx + tanx ) dx = f(x) + x + c then f(x) =

int x^(x) ( 1 + log x ) dx =

int e^(-x) (1 - tanx ) Secx dx =

If int (sec^(2) x)/(3 + 4 tan x) dx = K log | 3 + 4 tan x | + C then 1/K =

int e^(x log a) e^(x)dx=