Home
Class 12
MATHS
int e^(x) (tan x tan^(2) x ) dx =...

`int e^(x) (tan x tan^(2) x ) dx = `

A

`e^(x) " " tan^(2)` x + c

B

`e^(x) Sec^(2)` x + c

C

`e^(x)` tan x + c

D

`e^(x)` (tanx - 1)+ c

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|16 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

inte^(x)(tanx+tan^(2)x)dx=

Evaluate the following integrals int e^(x) (tan x + sec^(2) x ) dx

int sec^(2) x tan^(2) x dx=

int tan^(4) x dx=

int x Tan^(-1) x dx=

int (tanx)/(1+tan^(2)x)dx=

int_(0)^(pi//4)(tan^(4) x + tan^(2) x ) dx=

int (1 + tan^(2) x)/(1 -tan^(2) x) dx =

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is

Evalute the following integrals int e^(x) (tan x + log sec x ) dx