Home
Class 12
MATHS
If I(n) = int sin^(n)x dx, then nI(n)-(n...

If `I_(n) = int sin^(n)x dx`, then `nI_(n)-(n-1)I_(n-2)=`

A

`- sin^(n -1)` x cos x

B

`cos^(n -1) x sin` x

C

`sin^(n -1)` x cos x

D

`- cos^(n -1)` x sin x

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE -II|157 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|16 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int cos^(n) x dx , then 6I_(6) -5I_(4) =

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

For n ge 2 , If I_(n) =int sec^(n) xdx," then "I_(4) -(2)/(3) I_(2) =

If I_(n)= int(sin nx)/(cos x)dx , then I_(n)=

If I_(n) = int Sec^(n) x dx then I_(8) - (6)/(7) I_(6) =

If I_(n)=int (cos nx)/(cosx)dx, then I_(n)=