Home
Class 12
MATHS
int (sec^(2)x)/((sec x+ tan x)^(5))dx=...

`int (sec^(2)x)/((sec x+ tan x)^(5))dx=`

A

`(1)/(4(sec x + tan x)^(4)) [ (1)/(2) - (1)/(3(sec x + tan x )^(2)) ] + C`

B

`(-1)/(4(sec x + tan x)^(4)) [ (1)/(2) + (1)/(3(sec x + tan x )^(2)) ] + C`

C

`(-1)/(4(sec x + tan x)^(4)) [ (1)/(3) + (1)/(3(sec x - tan x )^(2)) ] + C`

D

`(1)/(4(sec x + tan x)^(4)) [ (1)/(3) - (1)/(3(sec x - tan x )^(2)) ] + C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int (secx)/((sec x+ tan x)^(2))dx=

Evalute the following integrals int (sec^(2) x)/( ( 1 + tan x )^(3)) dx

Evaluate the integerals. int (sec x)/((sec x + tan x)^(2))dx on I sub R \\{(2 n +1) (pi)/(2): n in Z}.

Evalute the following integrals int (sec x)/((sec x +tan x )^(n)) dx

I : int ((1+x)e^(x))/(sin^(2)(x e^(x)))dx= cot(x e^(x))+c II : int (secx)/((sec x+tan x)^(2))dx=(1)/(2(secx+ tan x)^(2))+c

int (sec^(2)x)/(log (tanx)^(tanx))dx=

int (sec x)/( sqrt(sec x+ tan x))dx=

int (1)/(sec x+ tan x)dx=

Evaluate the integerals. int (sec ^(2) x)/((1+tan x)^(3))dx on I sub R \\{n pi -(pi)/(4) : n in Z}.

int (sec^(2)x)/(sqrt(a+b tan x))dx=