Home
Class 12
MATHS
int 5^(5^(5^(x)))*5^(5^(x))*5^(x)dx=...

`int 5^(5^(5^(x)))*5^(5^(x))*5^(x)dx=`

A

`(5^(5x))/((log5)^(3)) + c `

B

`5^(5x) (log 5)^(3) + c `

C

`5^(x)(log5)^(3)` + c

D

`(5^(5^(5x)))/((log 5)^(3)) + c `

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int 2^(3x)3^(2x) 5^(x)dx=

int e^(3-5x)dx=

If int x^(3)e^(5x)dx-(e^(5x))/(5^(4))(f(x))+0_(3) then f(x)=

int_(0)^(5)x(5-x)^(10)dx=

If int x^(3) e^(5x)dx=(e^(5x))/(5^4)(f(x))+c , then f(x)=

int(x^(3)+5x^(2)-4)/(x^(2))dx

int 2x(x^(2)+1)^(5)dx=

int (x^(5))/(x^(2) + 1) dx =

Evaluate the integral int_(0)^(5) x^(2) (sqrt(5-x))^(7) dx