Home
Class 12
MATHS
If ((x- 1)^(2))/((x^(2) +1)^(2)) dx = ta...

If `((x- 1)^(2))/((x^(2) +1)^(2)) `dx = `tan^(-1)` x + g (x) + c then g (x) =

A

`tan^(-1)"" (x)/(2) `

B

`(1)/(x^(2) + 1)`

C

`(-2)/(x^(2)+ 1)`

D

`(1)/(2 (x^(2) +1))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If int (x^(2) + 2)/((x^(2) + 1)(x^(2) + 4)) dx = A tan^(-1) x + B tan^(-1)""(x)/(2) + c then (A, B) =

If int (x^(2)-a^(2))/(x^(2)+a^(2))dx=x+k "tan"^(-1)(x)/(a)+c then k=

If int (1)/( 2 + sin^(2) x ) dx = k. tan^(-1) ( l tan x ) + C then (k, l ) =

If int (1)/(2 + cos x) dx = A tan^(-1) (B. tan""(x)/(2) ) + c then (A, B) =

int (1)/((1+x^(2)) Tan^(-1)x)dx=

If y = tan ^(-1) ((2x )/( 1 -x ^(2))) + tan ^(-1) ((3x - x ^(3))/( 1 - 3x ^(2)))- tan ^(-1) ((4x - 4x ^(3))/( 1 - 6x + x ^(4))), then show that (dy)/(dx) = (1)/(1 + x ^(2)).

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =

Assertion (A) : int (2 x tan x sec^(2) x + tan^(2) x) dx = x tan^(2) x + c Reason (R) : int (x f^(1) (x) +int(x) ) dx = x f(x) + c The correct answer is