Home
Class 12
MATHS
int (1)/((1 + x^(2)) sqrt(1-x^(2))) dx=...

`int (1)/((1 + x^(2)) sqrt(1-x^(2))) dx=`

A

`(1)/(sqrt(2)) tan^(-1) ((sqrt(2x))/(sqrt(1 -x^(2))) ) + C `

B

`(1)/(sqrt(2)) tan^(-1) ((sqrt(2x))/(sqrt(1 + x^(2)))) + C `

C

`(1)/(2) tan^(-1) ( (sqrt(2x))/(sqrt(1 -x^(2)))) + `C

D

`(1)/(2) tan^(-1)( (sqrt(2x))/(sqrt(1 + x^(2))) ) + C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|84 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int (1)/((x^(2)+9)sqrt(x^(2)-9))dx=

int_(0)^(1) (x^(6))/(sqrt(1-x^(2)))dx=

Evaluate int (1)/(sqrt( sin^(-1)x) sqrt(1-x^(2))) dx " on " I=(0,1)

int (1)/(x^(2)sqrt(1+x^(2)))dx=

int sqrt(1+x-2x^(2))dx=

int (x^(3)+1)/(sqrt(1-x^(2)))dx=

int (x)/(sqrt(1- x^(2)) cos^(2) sqrt(1 - x^(2))) dx =